Bôla de canela
sábado, 30 de março de 2013
quarta-feira, 20 de março de 2013
Despedir professores, já!
Não perderam tempo.
A agonia só agora vai começar.
Hoje é a mobilidade especial e a alteração aos QZP.
Amanhã será o aumento da componente lectiva para 25 ou 26 horas. Para haver mais profs para colocar na dita mobilidade.
E será uma Quaresma de mais novidades do género, que durará até 1 de Setembro. Deste ano. Pois no próximo, novo ajustamento será preciso.
Gente, dita tão competente, com MBA's e outros grandes rótulos do género, mas que para resolver o problema só consegue uma solução: DESPEDIR!
Gente que quando diz uma verdade lhe cai um braço. E é só por isso que os nossos governantes não são manetas.
Os outros hipotecaram o país. Estes depenam o povo para sobreviverem aos juros da hipoteca.
Já agora, ponham o Ministro também em mobilidade especial, pois nem a coragem tem de ser ele a dar as tristes notícias.
segunda-feira, 18 de março de 2013
A estatística do Pai português
A propósito do dia do pai que amanhã se celebra, o INE publicou um retrato em números do Pai português.
Aqui fica um resumo:
"Em Portugal, 1 631 376 Pais vivem com filhos/as. A idade média dos Pais é de 47,1 anos. Na sua maioria são casados e
vivem, em média, com 1,5 filhos.
A maioria dos Pais (92,5%) vive em núcleos familiares de casal só com filhos/as comuns.
Na última década, registou-se um aumento assinalável (+33,2%) de núcleos familiares monoparentais, em que os/as
filhos/as vivem com o Pai.
No mesmo período, assistiu-se ao aumento dos núcleos familiares reconstituídos, com filhos de relacionamentos
conjugais anteriores da parte do Pai. Em 41% dos núcleos reconstituídos os casais têm filhos em comum".
sexta-feira, 15 de março de 2013
Despedir professores
10 mil, 20 mil, 50 mil? Não importa o número.
O que é preciso é despedir PROFESSORES!
Os profs é que são o défice. Dar-lhes um grande pontapé é que é o ajustamento!
Cada nova avaliação mostra que ninguém acerta uma previsão.
Cada nova avaliação trás consigo novo pacote de austeridade e por mais tempo.
Cada nova avaliação obriga a trabalhar mais por menos dinheiro.
Cada nova avaliação implica mais despedimentos.
Mas, dizem eles, que "Portugal está no bom caminho".
Para onde, pergunto eu? Só vislumbro o abismo!
De despedimento em despedimento até ao despedimento final. E este último, só pode ser o deles!
quarta-feira, 13 de março de 2013
sexta-feira, 8 de março de 2013
Relatório da OCDE
Na notícia do Público sobre o relatório da OCDE lê-se a dada altura:
O analista da OCDE Paulo Santiago, que coordenou o relatório sobre a avaliação no sistema de ensino português, frisou que Portugal é mesmo “um caso extremo” na organização, uma vez que “não existe ainda nas escolas uma cultura de porta aberta, permitindo que professores observem aulas de outros colegas”. Portugal é também “quase um caso único” na OCDE no que toca à “relutância de professores e dos próprios directores em fazer um juízo profissional sobre outros colegas”, acrescentou.
Com todo o respeito, ouso perguntar:
Os médicos avaliam os seus pares?
Os juízes avaliam os seus pares?
Os jornalistas avaliam os seus pares?
Os secretários de estado avaliam os seus pares?
Os analistas da OCDE avaliam os seus pares?
E depois, estes relatórios da OCDE são conforme os ventos que sopram. Às vezes sopram para um lado, outras para o outro. E alguns desses ventos são ventos de conveniências!
quarta-feira, 6 de março de 2013
Comentário ao Teste Intermédio de Matemática A, 11º Ano de 06/03/2013
- Face do número de questões presentes e à exigência de algumas delas, uma hora e meia parece-me um tempo curto para os alunos resolverem o teste.
- Relativamente ao nível de exigência das questões, considero que o teste se pode dividir em duas partes: até à questão 2.1. e depois desta questão (embora a 3ª questão do Grupo I também se possa incluir na 2º destas partes).
- Até à questão 2.1., as questões apresentam um nível de dificuldade que considero apropriado. Não sendo "ridiculamente" fáceis como noutros tempos, parecem-se estar mais ou menos bem enquadradas no "espírito" das indicações metodológicas do programa (se é que estas indicações ainda valem alguma coisa!). Tal não significa porém que a maioria dos alunos as consigam resolver. Mas isso estará relacionado, talvez, com a obrigatoriedade da escolaridade obrigatória, com a experiência passada e com a exteeeeeeeeeeeeeeeeeensão do programa que é preciso cumprir. Coisas que só os professores é que acham relevantes para o assunto!
- De qualquer forma, sobre esta primeira parte de questões que no seu conjunto valiam 130 pontos, deixo duas observações. Na questão 2.1.3. solicita-se, directamente, um conteúdo abordado no 10º ano. Com tantos temas de 11º a serem tratados, havia necessidade de ir buscar um de 10º? A sorte terá sido, talvez, que a fórmula da superfície esférica ainda não tinha sido apagada da memória da calculadora gráfica desde o ano passado. Na questão 1.2.2., o enunciado poderia ter sido elaborado de outra forma de modo a possibilitar a quem faz erradamente a expressão da função composta (ou a quem a não sabe fazer) resolver o resto do exercício.
- A partir da questão 2.2. (inclusive) o grau de dificuldade aumenta. Deve dizer-se, em abono da verdade, e ao contrário do que aconteceu com o último TI do 12º, o aumento do grau de dificuldade se faz com alguma consistência. Na realidade, no TI do 12º, grande parte da dificuldade resultou da reminiscência de exercícios que caíram em "desuso", nomeadamente, os limites solicitados ou a equação com factoriais. Isto é, temas que, em face das indicações metodológicas do programa, deixaram de ser uma preocupação dos professores. Neste TI do 11º não é nisso que o aumento de dificuldade se baseia. Apresentam-se exercícios que exigem um maior grau de consolidação das matérias, em paralelo com a existência de bons níveis de abstracção e de estruturação das resoluções. Ou seja, não se pode dizer que eles estão desadequados ao programa. Por exemplo, o 3.1. é até bastante parecido a um exercício do TI de 11º de Fevereiro de 2012.
- No entanto, e apesar do que foi escrito, em minha opinião permanece o problema central. Estando este TI de 11º mais ajustado ao programa, tal não invalida que esteja adequado à realidade dos conhecimentos matemáticos da maioria dos alunos que o fizeram. Volta a verificar-se aqui a pressa da tutela em fazer coisa difíceis, exigentes. Ainda por cima em tempos em que à escola pública foram tirados os poucos recursos de que dispunha para concorrer com o privado. O que interessou foi ocupar os professores com horas lectivas. Faltam horas para apoios, metem-se mais alunos na mesma sala e, a todo o custo, aumente-se a exigência!
- Já se torna rotineiro acabar estes comentários da mesma forma, mas esta é a realidade. A pressa é inimiga da perfeição!
sexta-feira, 1 de março de 2013
Comentário ao Teste Intermédio de Matemática A, 12º Ano de 28/02/2013
Foi há poucos dias atrás que aqui recordei o Teste Intermédio (TI) de Matemática do 9º ano de Maio de 2012. Fi-lo propositadamente. Os testes intermédios do presente ano lectivo estavam a iniciar-se. O GAVE tinha acabado de publicar o relatório relativo a 2012, onde estavam patentes os maus resultados registados. Procurei, novamente, apelar à congruência entre os níveis de exigência e o passado recente. Procurei, novamente, invocar o bom senso na mudança, isto é, que se tivesse presente a necessidade de tempo para a fazer.
O TI de Matemática A do 12º ano que ontem se realizou vem demonstrar a actualidade e a pertinência das considerações que fiz.
O GAVE ou quem lhe dá orientações prosseguiu a sua saga de exigência, imediata e a qualquer custo.
Na realidade, este TI apresenta um considerável número de questões com elevado nível de exigência para estes alunos. Digo estes, não porque eles sejam mais desprovidos de capacidades do que outros, mas porque estes fizeram a sua escolaridade num ambiente caracterizado pela escolaridade obrigatória fundamentada no facilitismo promotor de sucesso estatístico e administrativo.
O elevado nível de exigência que refiro observa-se neste TI sob vários aspectos.
Um tem a ver com o propósito, que parece ter existido por parte de quem construiu as questões, de as tornar complicadas, trabalhosas e até de ressuscitar os modelos antigos das questões de há 25 anos atrás. Por exemplo os item 3.1 (no cálculo do limite à direita de 4) e 3.2. Com tantos exemplos possíveis para testar a capacidade de cálculo de limites e as técnicas de levantamento de indeterminações, no item 3.2., foram buscar aquele exemplo mais complicado, menos usual, que obriga ao conhecimento de que, de um modo geral, a raiz quadrada de x^2 é o módulo de x e não necessariamente o x. No limite referido em 3.1., não lhes chegou obrigar o aluno a uma substituição, foi preciso colocar lá um exemplo com duas, embora o exercício possa resolver-se com uma só (a substituição y=ln(3x-11)). Já agora, podiam ter apresentado este processo alternativo na folha de resolução da prova e ter apresentado os respectivos critérios de classificação.
Na mesma linha de raciocínio temos o item 4.2. que, não se podendo dizer que é uma questão pouco habitual, foi eleita para testar a capacidade de resolução de equações com exponenciais. Tinha que se escolher uma que obrigasse à substituição para "surgir" a equação do 2º grau. Com aquelas expressões das funções quantos alunos é que terão conseguido "ver" essa substituição?
E também a questão 3.3., em que até se lembraram de incluir uma restrição do domínio que engloba os dois ramos da função.
E ainda a questão 1.1., um exemplo rebuscado de aplicação da regra do produto ou do Teorema da Probabilidade Total. Só espero que os alunos se tenham lembrado de fazer uma tabela ou um esquema para facilitar a resolução (algo que o GAVE não faz na resolução que apresenta).
Outro aspecto é o ignorar dos documentos orientadores, neste caso o Programa de Matemática A (homologado em 2002). Tal como está exarado na Informação nº 2 do GAVE sobre os testes intermédios de Matemática A de 2013 e na Informação nº 18.13 do mesmo gabinete sobre a prova de exame de Matemática A (635), os testes intermédios "têm por referência o Programa de Matemática A (homologado em 2002)". Ora na página 5 do dito programa, quanto às indicações metodológicas, pode ler-se: "As indeterminações são referidas apenas para mostrar as limitações dos teoremas operatórios. O programa apenas pressupõe que se levantem as indeterminações em casos simples. Dificuldade a não exceder:"
Comparem-se estes limites com os do TI. Algo aqui não bate certo. Será preciso lembrar que as metas curriculares ainda nem sequer se conhecem ou que ainda não estão em vigor?
Um último aspecto é a dificuldade em encontrar neste TI exercícios em número suficiente para garantir a um aluno com um desempenho na Matemática baixo, médio baixo ou até mediano, a possibilidade de ter positiva. Num teste, o nível de dificuldade deve ser doseado. Devem existir questões com diferentes níveis de dificuldade.
Percorro as questões deste TI e custa-me encontrar esse número mínimo.
Acabo como tenho feito em outros posts sobre este assunto. Quero exigência, mas também quero que se desça à terra e se considere a realidade que temos. Já me chegam os choques de austeridade que me impingem. Rápidos e ao ritmo frenético dos erros de previsão do Governo sobre os números da economia.
Em educação não pode ser assim. A exigência não se pode impor, de um dia para o outro.
É preciso teeeeemmmmmpppooooooo!
Subscrever:
Mensagens (Atom)